TensorFlow 101: Introduction to Deep Learning

Udemy
Deal Score+1
Deal Score+1

TensorFlow 101: Introduction to Deep Learning 4.4 (149 ratings) Course Ratings are calculated from individual students’ ratings and a variety of other signals, like age of rating and reliability, to ensure that they reflect course quality fairly and accurately.

What you’ll learn

  • You will be able to build deep learning models for different business domains in TensorFlow
  • You can distinguish classification and regression problems, apply supervised learning, and can develop solutions
  • You can also apply segmentation analysis through unsupervised learning and clustering
  • You can consume TensorFlow via Keras in easier way.
  • Finally, you will be informed about tuning machine learning models to produce more successful results

Requirements

  • Familiar with machine learning concepts
  • Basic Python

Description

This course provides you to be able to build Deep Neural Networks models for different business domains with one of the most common machine learning library TensorFlow provided by Google AI team. The both concept of deep learning and its applications will be mentioned in this course. Also, we will focus on Keras. 

We will also focus on the advanced topics in this lecture such as transfer learning, autoencoders, face recognition (including those models: VGG-Face, Google FaceNet, OpenFace and Facebook DeepFace).

This course appeals to ones who interested in Machine Learning, Data Science and AI. Also, you don’t have to be attend any ML course before.Who this course is for:

  • One who interested in Machine Learning, Data Science and AI
  • Anyone who would like to learn TensorFlow framework

Software Engineer

Serengil received his MSc in Computer Science from Galatasaray University in 2011.

He has been working as a software developer for a fintech company since 2010. Currently, he is a member of AI and Machine Learning 

His current research interests are Machine Learning, particularly applications of Deep Learning and Cryptography in particular Elliptic Curve cryptosystems.

Compare items
  • Total (0)
Compare
0